
THE GAS  and  “Gasses” 
 

•  probabilistic description of “classical ideal gas”, distinguishable 

particles 

   - probability densities and (cumulative) distribution functions 

   - positions, velocities, energies, pressure, heat capacity 

 

•  Bose gas 

   - blackbody radiation 

   - BE condensation in alkali vapors 

   - lattice vibrations, heat capacity 

 

•  Fermi gas 

   -  electrons in metals  and semiconductors 

   -  Fermi-Dirac statistics and its classical limit 

   -  optical response of free electrons and interband transitions 

   -  surface plasmon resonance 

1 

Josef Humlíček 

CEITEC MU, Brno, Czech Republic 

 

Advanced School on Modelling and Statistics...  Linz, Austria 11/09/2016 – 16/09/2016 



Classical gas at equilibrium 

 

from probabilities to macroscopic quantities and 

their fluctuations 
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The atmosphere in everyday (laboratory) life 

- is instrumental in setting the temperature of our 

samples, 

- influences adsorption, desorption, evaporation, ... 

- might be important in biosensing 
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Probability theory applied to 

 

- positions of particles 

- pressure 

 

averages (“expectations”) and fluctuations 



Humphrey Davy 1801 

 

experiment at “Pneumatic institution” in Bristol 

N2O (laughing gas, Lachgas, gas esilarante, rajský plyn) 
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Free movement of (noninteracting, “small”) particles; 

 

changes of their motion occur only via collisions: 

 

• interparticle, 

• hitting (condensed) obstacles, like walls of a container, 

or a pressure sensor.  

? 

 

1643 

 

? 
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Collisions: interparticle + walls 
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Elastic collisions: interparticle 
consider (nonrelativistic) conservation of momentum and energy 
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In 1-dimensional case, the solutions for final velocities are 

(1) trivial, no collision: 

 ,   f i f iv v V V 
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        (for m=M: vf=Vi, Vf=vi ) 

 

In 2- and 3-dimensional case, the interaction potential (force) has 

to be specified 7 



Large number of particles and unknown initial states → 

probabilistic description 

Physical reasoning, supported by relatively simple, but often a bit tricky 

calculations. 

Caution: 

usually prone to make errors 

in deriving/interpreting 

formulae 

Famous quote by Laplace: 

 

...la théorie des probabilités n'est, au fond, que le bon sens réduit au calcul; 

 

...probability theory is nothing but common sense reduced to calculation. 

(Laplace on probability theory) 
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Positions and velocities 

in classical gas 
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The probabilistic description 

Easy for positions of gas particles without external forces: 

select volume V0 within the gaseous body contained in V 

0 0,1oV
p

V
 

is the probability of finding a selected (i-th) particle within V0  

V0 

V 

(P0) 

We find that 
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Assume having N distinguishable (classical) particles in total,  

each of them being placed within V0 with the same probability p0, 

independently of all the remaining; then the probability 

0(  selected particles are found in ) M

oP M V p

results for any M=1,...,N (successive multiplications of p0).  

1,...,  ,i N

The same reasoning leads to the following probability: 

0

0 0

(  selected particles are found in ,

all of the remaining are outside of )

(1 )  .

o

M N M

P M V

V

p p  

(PM) 
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The set of M particles, disregarding their identification (indices), 

may be realized in the following number of combinations: 

!
 ,  ! 1 2 3...  .

!( )!

N
N N

M N M
  



The probabilities (with M=0,1,...,N) 

(M/N) 

0

0 0

(  particles are found in ,

the remaining  are outside of )

!
(1 ) ( ) .

!( )!

o

M N M

N

P M V

N M V

N
p p P M

M N M





  


(Binomial) 

form binomial (Bernoulli) distribution, describing the chances of 

M successes in N independent trials. 
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The discrete random variable M has the mean value 

(mathematical expectation) 

0
0

0

( )  ,
N

N

M

V
M M P M Np N

V

   

the mean density is independent of the selected volume V0 

(Dens) 

These prediction is in agreement with the actual behavior of gasses, 

as they fill uniformly the available volume. 

 

The irrational “horror vacui” (attributed to Aristotle) is not needed. 

0

 .
M N

n
V V

 
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We are able to quantify expected deviations of the actually observed 

values from the mean; the proper quantity to use here is the square 

root of the dispersion – the second central moment - of (Binomial): 

 
2

0 0
0 0(1 ) (1 )  .M

V V
M M Np p N

V V
      

The relative fluctuations of both number of particles and density are 

(RelFluct) 
0

0

1
 .M

V V

M VN



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In spite of typically very large values of N, the above results are 

usable owing to the Moivre-Laplace approximation of binomial 

probabilities: 

 
2

0

2 22
0 0

2

1
( )  ,  (1 ) .

2

M Np

NP M e Np p 


 

  

We have here an approximation of the discrete probability 

distribution by a simple (Gaussian) continuous distribution. 

The standard deviation of the latter allows us to construct 

confidence intervals; obviously, the probability of finding 

the actually measured value of M in the intervals 

(M-L) 

  and   2M M  

is 0.863 and 0.954, respectively. 
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Large number of random collisions – independent changes 

of velocity along x, y, z 

Maxwell 1860: the probabilities of finding velocities in specified intervals 

(1)  are multiplied for vx, vy, vz (independence); 

(2)  depend on the magnitude of the vector of velocity (no preferences 

in directions) 

2

2 2 2 2

( ) ( ) ( ) ( )  ,x x x y y y z z z x y z

x y z

f v dv f v dv f v dv g v dv dv dv

v v v v



  

Property (1) requires an exponential form of the probability densities, 

2
2

1( )  .xconst v

x xf v const e

Using a convenient symbol for the (negative) second constant and 

setting the first constant to have the density normalized, we arrive at 

2 2/1
( )  .x pv v

x x

p

f v e
v


 (Maxw_comp) 
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The components of velocity are distributed normally; 

 the probability density is N(0,vp
2/2). 
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(Maxw) 

The probability density of the magnitude of velocity results from the 

integration over all directions; in spherical coordinates, 

2 sin( )d d d  ,x y zdv dv dv v v  

it results from the probability 

2

2 2

0 0

(magnitude of the velocity vector is between  and d )

( )d d d  ( ) sin( )d  .

P v v v

f v v g v v v

 

  

 

  
After inserting g as the product of three exponentials (Maxw_comp), the 

famous Maxwell distribution takes the form 

2 2/2

3

4
( )  for 0 ,

( ) 0 for 0 .

pv v
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f v v e v
v

f v v




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As this density has its maximum for v/vp=1, vp is usually called 

the “most probable velocity”, in spite of P(v=vp)=0. 
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The magnitude of velocity in the three-dimensional space: 
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The probability of finding the magnitude of velocity larger than v: 
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The probability of finding the magnitude of velocity larger than v - 

the chances of exceeding 10-times vp are really small: 
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/ 2  .x y z pv    

An alternative way to Maxwell distribution 

 

invokes the Central Limit Theorem of probability theory: 

adding infinite number of independent random changes of any velocity 

component with (almost) arbitrary distribution produces Gaussian 

distribution; its mean is zero (no directional preference); denoting its 

standard deviation by x, the probability density is 

2 2/ 21
( )  .

2

x xv

x x

x

f v e







The standard deviation of velocity component along y and z is the 

same; expressed in terms of vp : 

(Maxw_comp) 
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2 2 21
( )  .

2
x y z x y zE m v v v E E E     

The kinetic energy is the linear function of the squares of velocity 

components are related to kinetic energy, 

The contribution of the movement along a selected direction to the 

kinetic energy is the random variable with the probability density 

obtained from the following probabilistic statement: 

(the contribution along  is between  and d )

( )d 2 ( )d  , 0 .

x x

x x x x x x x

P x E E E

g E E f v v v

 

 

Note the symmetric contributions of the movements with negative and 

positive signs of velocities, leading to the factor of 2 in the above 

relation. 
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2 2/ / 2

2

2 1
( )  for >0  ,

2 / 2

where   / 4 .

x p x pv v E E

x x x

x p p x p

p p

g E e e E
mv v E E E

E mv

 

 
 



Since 

d / d 2    for 0 ,x x x x xE v mv mE v  

the probability density of Ex is 

The probability density hx of the dimensionless energy ex =Ex/Ep is 

/ 21
( )  for >0  ;

2 / 2

xe

x x x

x

h e e e
e




this is the 2 distribution with one degree of freedom. 
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The probability density of 

Ex  (1D movement, n=1), 

Ex + Ey  (2D movement, n=2), 

Ex + Ey + Ez (3D movement, n=3), 

 

after normalization to Ep, is 2(n): 
( 2) / 2

/ 2

nd

1

0

( / 2)
( )  ,

2 ( / 2)

0,   1, 2,... ,

( ) ,  ( ) 2  ;

Euler integral

of the 2  kind,

( )  ,

ensures normalization;
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
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Adding the energy of many particles leads to the 2(n) probability 

density with large numbers of freedom: 

2(n) converges (rather slowly) to N(n, 2n) – dashed lines below for 

10, 20 and 40 particles in 3D space 
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Note the narrowness of the distribution for any macroscopic piece 

of gas; relative fluctuations of the energy are of the order of 

1/  .n
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Digression to “fitting models to data”: 

 
the above exercise with the Gaussian and 2 distributions is very useful in assessing 

the values of “best-fit deviations”, or minimal sum of squares, 
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A range of values expected with a “reasonable probability” results from the above 

probability density. 

2
measured model

1

1
 ,

with  data points

and  model parameters.
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Pressure 

in classical gas 
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Elastic collisions with a pressure gauge, perpendicular to x, area S: 

0

2 2
2

2

0

1
2 ( )d

2
exp d  .

2

x x x x x

x x
x p

p p

N
F mv S v f v v

V

v vmSN mSN
v v

v v VV












 
    

 





area S volume V 

number of particles N 

(Force) 

The mean force is the mean momentum passed during  divided 

by the time  : 

force F=pS 

x 

vx 

mass m 
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Pressure is the force per unit area, 

2 21
 ,

2 2
p p

F mN N
p v mv

S V V
  

with the obvious proportionality to the gas density N/V. 

Looking back at the meaning of vp and the distribution of energy, 
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2 / 4 :p pE mv

The mean (average, 

expectation) value of 

energy is 

 

Ep, 2Ep, and 3 Ep 

 

for n= 1, 2, and 3, 

respectively 

(recall the 2(n) 

distribution). 
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The natural temptation is to express the pressure in terms of the mean 

value of kinetic energy of any single particle, 

21 2
 .

2 3
p

N N
p mv E

V V
  (Pressure) 

leading to 

23
3  ,

4
p pE E mv 

“Pressure of the gas with Maxwellian distribution of velocities is 2/3 

of the volume density of kinetic energy.” 

 

Temperature T of the gas is defined by 

3
 ,

2
BE k T

involving the Boltzmann constant kB. 
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The probabilistic approach results in the relation between macroscopic 

(averaged) quantities: 

 .BpV Nk T (Equation of state) 

Repeated measurements may reveal “fluctuations”, governed by 

the involved probability distributions. 
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The internal energy (which is state variable) for the gas having 

N particles: 

1

3
 ,

2

3
 .

2

B

mol A

U N E Nk T

U N E RT

 

 



The microscopic model predicts the heat capacity at constant volume 

(with vanishing work pdV) : 

3
 .

2
BV

V V

Q U
C Nk

T T

 
  

 
(C_V) 

It is independent of temperature and the mass of the (pointlike) 

particles. The numerical value is about 12.5 J/(mol.K). 

 

More generally: 

the expectation value of energy per one quadratic term in 

Hamiltonian is 

33 

 ,
2

Bk T

leading to the contribution to CV of 
 .

2

Bk

This is very often in harsh contradiction with the actual behavior of 

matter; repaired by using quantum physics instead of the classical. 



Boson gas at equilibrium 
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- blackbody radiation 

 

- Bose-Einstein condensation in alkali vapors 

 

- vibrations, heat capacity 
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Blackbody radiation – quantum gas 

 
moving charges (electrons and nuclei) in the walls of a cavity 

produce electromagnetic radiation 

a small opening, 

detector(s) 

 

photon counting 

possible 

volume V 
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The electromagnetic field can be decomposed into modes 

travelling with the speed of light c - 

frequency, period, angular frequency, wavelength, wavenumber: 

1
 .

2

c
f ck

T



 
   

In classical physics, each of the modes has the mean energy of kBT 

(kBT /2 for each of the two polarization states); this predicts the 

diverging spectral density of internal energy 

(Rayleigh-Jeans) 

The spectral density of modes is 

2

2 3

number of modes with frequency from  to 
( )  .

V
D

c

   


 

 
 



2

2 3
( )  .B

V
u k T

c






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Planck 1900 

 

Energy appears in multiples of quanta, 

Each of them occurs with the canonical probability P(En), dependent 

on its value and the temperature of the thermal bath (the container 

surrounding the blackbody cavity): 

 

 
0

exp /
( )  .

exp /

n B

n

n B

n

E k T
P E

E k T









,  0,1,2,...   .nE n n 

The expectation value of the random variable En is 

 

   
0

0

0

exp /
1

( )  .
exp / 1

exp /

n B

n
n

n B
n B

n

n E k T

E E P n
k T

E k T


















  









(DiscreteE) 
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Combined with the spectral density of modes, it leads to the famous 

Planck formula for the spectral density: 

The corresponding power density for several values of temperature: 

 

3

2 3
( )  .

exp / 1B

V
u

c k T




 


 (Planck) 
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We can easily consider the limiting case of neglecting the discrete 

structure of “energy levels” of the random variable En in (DiscreteE); 

using a continuous random variable with the exponential probability 

density 
 exp /

( )  ,  0 ,
B

B

E k T
f E E

k T


 

the mean of energy is 

0

( ) BE Ef E dE k T



 

and we arrive at the classical (Rayleigh-Jeans) formula. The criterion 

for the possibility to neglect the quantum effects is obvious from the 

following Taylor expansion: 

 for , exp / 1 /  , and

 .

B B B

B

k T k T k T

E k T

    


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A nearly perfect blackbody is our Universe – CMB (Cosmic Microwave 

Background): 

41 



In a more critical confrontation of the measured data and Planck law: 
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Even anisotropies of CMB are observable from satellites: 
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Blackbody radiation shows clearly the wave→particle direction of the 

quantum-mechanical dualism (in the ultrarelativistic bosonic gas): 

we can count the photons 

a small opening, 

detector(s) 

 

photon counting 

possible 

volume V 
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The opposite direction, particle→wave, of the quantum-mechanical 

dualism has been confirmed many times; it shows up even in “real” 

gases in Bose-Einstein condensation of vapors of alkali vapors: 

from 

“Experimental studies of Bose-

Einstein condensation” 

Durfee and Ketterle, 1998 

Sodium 

at MIT, 

Rubidium 

at Boulder, CO 

 

Nobel prize 

2001 
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Very small temperature and large density is required for the 

significant overlap of the wave functions. 
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The phonon gas and lattice heat capacity 

 

in condensed matter (solids and liquids) the internal motion is vibrational 

 
2 2

1 , 1

1
{ },{ }  .

2 2

f f

i
i j

i i ji i j

p U
H q p q q

m q q 


 

 
 

In the harmonic approximation, the energy is a quadratic function 

of momenta, p, and displacements, q: 

The crystal symmetry allows us to find a transformation to normal 

coordinates {Q,P}, leading to a set of f independent harmonic 

oscillators, with 

 
2

2

1

{ },{ }  .
2

f

i
i i

i i

P
H Q P Q

M




 
  

 

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The (quantum) harmonic oscillators have equidistantly-spaced energies 

We have included the zero-point energy 

The mathematical expectation of the energy of i-th oscillator is 

( ) 1
 .

2

i

n iE n
 

  
 

( )

0  .
2

i iE




 
 ,
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i

B

E
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 


 



giving the total internal energy of 

 1
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f

i i

i i B

U E
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 



 
   

 

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The famous Einstein model gave the correct qualitative result 

for the vanishing low-temperature heat capacity CV, assuming an 

identical value of the frequency for all of the oscillators: 

The heat capacity vanishes for vanishing T: 

 
 ,

2 exp / 1B

U f
k T

 



 
  

 

 
 

 

2

2

exp /
/  .

exp / 1

B

V B B

V B

k TU
C fk k T

T k T







 

   

   
2

/ exp /   for    .V B B B BC fk k T k T k T    

The high-temperature behavior of this model leads to the classical 

(Dulong-Petit) rule, as the mean energy is kBT/2 for each quadratic 

term in energy: 

3   for    .V B B BC fk Nk k T  

Here N is the number of atoms, each of them contributes 3 to the 

number of degrees of freedom f. 49 



The actual frequencies, e.g., crystalline silicon: 
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A major improvement here is that of Debye, assuming a spectrum of 

frequencies from zero to ωmax, which is an empirical parameter 

of the theory. The quadratic density of vibrational states results from 

the following development: 

   

max max

2

max3 3

 ,    ;   

2 1
( ) 4   , for  (0, )  .

trans long
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D E VE E E
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



  

 
   
 
 

Two degenerate (transverse) vibrational branches and one 

longitudinal branch are assumed to differ in their velocities v. 

The number of modes is 3-times the number of atoms N; 

consequently 
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 
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This maximum energy is usually expressed in terms of the 

Debye frequency or Debye temperature: 

1/3

max

3
 .

4
eff D B D

N
E hv k T

V




 
   

 

The mean energy (without zero-point vibrations) is 

   

max max
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exp / 1 exp 1
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B

B D

D E T u
E E dE Nk T du

E k T T u

 
   

  
 

and the vibrational heat capacity 
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
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The low-temperature limit is in accordance with the experimental 

T3 dependence: 

At high temperatures, the Dulong-Petit rule with a temperature-

dependent correction results: 

3
412

  for   .
5

V B D

D

T
C Nk T T

T

  
  

 

2
1

~ 3 1 ...   for   .
20

D
V B D

T
C Nk T T

T

  
     

   

The classical limit of molar heat capacity at constant volume is 

1 J J
3 3 6.022 23 *1.38 23 24.9  .

mol K K
V A BC N k E E    
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The measured heat capacity of crystalline silicon. Note that the 

phonon gas shows pretty much the quantum behavior even at room 

temperature: 
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Fermi gas at equilibrium 
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• electrons in metals  and semiconductors 

 

• Fermi-Dirac statistics and its classical limit 

 

• optical response of free electrons and interband transitions 

 

• surface plasmon resonance 
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Electrons in solids might be mobile 

Semiconductors – typically diamond and zincblende lattice: 

Metals – mostly cubic (BCC or FCC) lattice, e.g., gold: 
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A textbook metal - Sodium 

“the simplest of simple metals” 

body-centered cubic structure at RT, a=0.4230 nm 

 

the concentration of atoms (and free electrons, provided the single valence electron 

of each atom is free): 

3 22 3

3

2
26.4 nm 2.64 10  cmn

a

    
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Sodium – the apparent Fermi gas of valence electrons 

              meff/m0 

Li 1.33 

Na 0.97 

K 0.86 

Rb 0.78 

Cs 0.73 

 

2 2

0

5.18 19 J 3.23 eV 0.238 Ry
2

F
F

k
E E

m
    

free (non-interacting) particles, with the momentum and kinetic energy with effective mass 

2 22
*

* *
 ,   

2 2

Fkp
p m v k E

m m
   

At zero temperature, the available states are occupied up to the Fermi energy 
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Bandstructure of Au (FCC) 

 

many bands with nonparabolic dispersion 
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Bandstructure of Cu (FCC) 

 

many bands with nonparabolic dispersion 
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Ideal Fermi gas – basic description 

 ,dU TdS A dN   

1
( , ) exp  ,  exp  .

a

a a a a
a a a

a NB B

E N E N
w E N Z g

Z k T k T

     
      

   


Macroscopic (thermodynamic) conservation of energy, 

where TdS is heat acquired by the gas from the environment, A is the work 

performed by the gas, and dN is the change of energy given by a change 

of the number N of particles; S is entropy,  the chemical potential of the 

gas. 

Microscopic model is based on the probabilities of occupation of available 

states, indexed by their energies and numbers of particles: 

The normalization factor Z is called partition function, possible degeneracy 

of states is included by their multiplicity ga. The grandcanonical potential is 

ln( ) .Bk T Z  
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Ideal Fermi gas – basic description 

The independent (noninteracting), indistinguishable fermions obey the Pauli 

exclusion principle (the maximum occupation number of any state is one). 

Their Hamiltonian is the sum of single-particle contributions: 

The state vector of the gas is antisymmetric with respect to the exchange of 

ant two fermions. The energy eigenvalues can be degenerate (e.g., several 

states in a band scheme of a crystal can have the same energy). 

Consequently, we have to introduce an additional indexing symbol. The 

probability 

depends on the occupation numbers ni,i of the states with the energy Ei. 

1

ˆ ˆ ˆ ,  .
N

i i i i i

i

H H H E 


 

,

, , , ,

,

1
exp  ,  exp   ,

i i i i

ii i

i i
i i i i

ni B B

E E
w n Z n

Z k T k T


   



     
      

   

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Ideal Fermi gas – basic description 

since 

,

,

, , ,

1
=  ,

exp 1

i

i i i

i i

i i
i i i FD

n Bi

B

E
n n w f

k TE

k T





  



 

  
     

     
 



The random occupation of available states of different particles is 

independent, i.e., the corresponding probabilities are multiplied, as well as 

the normalizing factors in the partition function. 

The (random) occupation number has only two possible values, 0 and 1. 

The expectation (mean) is 

, ln 1 exp  .
i

i
i

B

E
kT

k T


  
     

  

The average occupation number is called Fermi-Dirac statistics, 

 
 
1

=  .
exp 1

FDf x
x 
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Ideal Fermi gas – basic description 

and the expectation values of the total number of particles and total energy 

are 

The available spectrum of energies is usually (quasi)continuous; using the 

density of states D, the number of particles with the energies between E and 

E+dE is 

Further predictions depend on the functional form of the density of states. 

( )  ,FD

B

E
f D E dE

k T

 
 
 

( )  ,FD

E
N f D E dE

kT






 
  

 


( )  .FD

E
E Ef D E dE

kT






 
  

 

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Ideal Fermi gas – basic description 

For the anisotropic dispersion 

The concentration can be expressed in terms of a special function called 

Fermi-Dirac integral: 

 
22 22

2

yx z

x y z

kk k
E k

m m m

 
    

 

 and the two-fold spin degeneracy, the density of states in volume V is 

2 3

2
( )  .

x y zm m m
D E V E




* 3/ 2

2 3

0

* 3/ 2 1/ 2

2 3

0

2 ( )

2 ( )
 ,      ,

exp( ) 1

FD

N m E
n f EdE

V kT

m kT t dt
z

t z kT













 
   

 

 
 





where * 1/3( )  .x y zm m m m
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Ideal Fermi gas – basic description 

In general, several macroscopic (averaged) quantities in the present context 

can be expressed in terms of the Fermi integrals 

The following simplification is often advantageous: 

satisfying the recursion 

where  is the Euler integral of the second kind. 

0

( )  ,   1 ,
exp( ) 1

j

j

t dt
F z j

t z



  
 

1( ) ( ) .j j

d
F z jF z

dz


0

( ) exp( ) exp( ) exp( ) ( 1)   for    ,j

jF z z t t dt z j z



      
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Ideal Fermi gas – basic description 

energy dependence of the mean occupation number 

Note that  , i

i
i FD

B

E
n f

k T


 
  

 

is the probability pocc of the state being occupied, as 

, 1* 0*(1 ) .
ii occ occn p p   
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Ideal Fermi gas – basic description 
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Ideal Fermi gas – the classical limit 

Whenever the chemical potential is much smaller than the smallest energy E 

(which is zero for the above density of states), the Fermi-Dirac statistics is 

approximated by the classical Boltzmann fB: 

This approximation can be interpreted in the following way. Using 

The concentration reduces to 

we identify T with the de Broglie wavelength associated with the particle 

having the energy kBT and mass m*. 

=exp exp  .FD B

B B B B

E E E
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k T k T k T k T
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       
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 
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Ideal Fermi gas – degeneracy 

Another useful approximation results for large concentrations, small 

temperatures and small effective masses. For chemical potential much 

larger than kBT, the FD statistics can be replaced by the step function, we 

obtain the concentration in the following form:  

0

* 3/ 2 * 3/ 2
1/ 2 3/ 2

02 3 2 3

0

( )2 (2 )
 .

3

Bk T

Bm k T m
n t dt




 

 

2/3 2
2/3

0 *

3
 .

8 2

h
n

m




 
  

 

Conversely, the T=0 limit of the chemical potential (usually called Fermi 

energy, is 

0* 3/ 2 * 3/ 2
3/ 2 5/ 2

0 02 3 2 3

0

2 ( ) 3 (2 ) 3
 .

5 3 5

E m m
E dE n

V



 
 

  

The volume density of mean energy is independent of temperature 

This is to be compared with the much smaller classical value (3nkBT/2). 
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Ideal Fermi gas – degeneracy 

The condition for complete degeneracy is the reverse of the classical limit: 

The dense packing of degenerate gas, characterized by the mutual 

intolerance of fermions, leads to the strong increase of energy. 

It is easily fulfilled in usual metals up to very high temperatures; we can 

express the Fermi energy in terms of the Fermi temperature: 

the typical values for metals are of the order of 104 K. 

 

On the other hand, reaching degeneracy in semiconductors requires 

typically heavy doping and low temperatures. 

3 3

*
 ,  .

2
T T

B

V h

N m k T
 


 
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B
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k




72 



metals: 

 

free electrons 
dominate in IR, 

 

overlap with 
interband transitions 
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Gas of free electrons in the optical response of metals 
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Gas of free electrons in the optical response of metals 

0 0 0
ˆ ˆ(1 )  ,D E P E E       

The (macroscopic) electric field of an optical wave moves the free 

elctrons and creates the induced polarization and current: 

 .j i P E   

Models and/or measurements provide several sets of interrelated 

response functions (“optical constants”): 
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Gas of free electrons in the optical response of metals 

The classical Drude model for a gas of free electrons/holes 

predicts the following spectral dependence of the complex 

permittivity, 

for the concentration of carriers N/V, their effective mass m*, and 

the scattering rate 1/  (the number of collisions destroying the drift 

velocity acquired in the time interval ). The imaginary part of  

diverges towards zero frequency, while the real part is finite and 

negative, the real part of conductivity is finite and positive: 

2
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4 1
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e
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2 24
Re (0) 1 ,

Ne

m

 
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Surface plasmon resonance in metallic films 

The Drude-like behavior of metals supports the surface-plasmon-

resonance in a thin metallic film surrounded by insulators. 

 

Namely, the evanescent wave occurring at oblique incidence of the 

p-polarized light (the electric vector of the wave lies in the plane of 

incidence, and therefore has a non-vanishing component 

perpendicular to the interfaces) can have substantially enhanced 

strength. This typically leads to strong variations of reflected 

intensity with varying frequency or angle of incidence. 

E
pr

E
pi

film



glass

film

metal (Au)
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Surface plasmon resonance in metallic films 

 

the tradeoff in choosing the thickness and material of the film; 

gold is very popular 
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Optical response of Au (Aspnes) 
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SPR, angular dependence 
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s-polarized reflectivity – detects the critical angle 

no enhancement of the light field within the Au film 
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SPR for fixed angle, spectral dependence 
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SPR – sensitivity to added layer 
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SPR – sensitivity to added layer 

 

for different angles of incidence  slightly absorbing layer 
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A selection of very interesting topics in ideal Fermi gases 

in semiconductors 

 

 

• creating fermionic gas by doping, shallow impurities 

 

• cyclotron resonance of electrons and holes 

 

• statistics of electrons/holes/excitons 

 

• screening of interface charges, MOS structures 

 

• metal-insulator transition 

 

 

• 2D, 1D  !! 
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