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1 Linear Response and the Fluctuation-Dissipation Theorem

1.1 Linear Response Theory

Let’s assume our system is perturbed by some external, t-dependent field. The perturbed Hamiltonian

H becomes

H(t) = H0 + λH ′(t) (1)

where λ is a parameter determining the strength of the perturbation.

Linear response means: weak perturbation (small λ) ⇒ response of system proportional to

perturbation strength λ, i.e. the response is linear.

perturbation: typically (but not always) H ′(t) can be factorized into a purely external, time-

dependent field f(t), and a system variable A depending on coordinates and momenta, Γ =

(R,P ) = ({ri}, {pi}) but independent of time:

H ′(t) = −A(Γ)f(t) (2)

example: harmonic electric field acting on charged particles

A =
∑
i

xi , f(t) = qE cosωt −→ H ′(t) = cosωt
∑
i

qExi (3)

response: response has to be measured, namely by observing a system variable B = B(Γ), such as

the density ρ(r;R) =
∑
i δ(r − ri), the current, etc. In thermal equilibrium B would have the

(canonical ensemble) average value

〈B〉NV T =

∫
dΓ ρ0(Γ)B(Γ) =

∫
dΓ

e−βH0

Q
B(Γ) (4)

where ρ0 is the canonical distribution and Q the partition function. Under the perturbation

H ′(t), the average of B becomes

〈B〉ρ(t) =

∫
dΓ ρ(Γ, t)B(Γ) (5)

where ρ(Γ, t) is not the distribution in thermal equibrium anymore, but the distribution evolving

in time due to the perturbation H ′(t).

The calculation of the response of B boils down to the calculation of ρ(Γ, t). Remembering the chapter

about the Liouville formulation and introducing Poisson brackets

{X,Y } ≡ ∂X

∂R

∂Y

∂P
− ∂X

∂P

∂Y

∂R
(6)
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ρ(Γ, t) = ρ(t) obeys the following 1.order differential equation

dρ(t)

dt
= iLρ(t) = Ṙ

∂ρ(t)

∂R
+ Ṗ

∂ρ(t)

∂P
(7)

= −{H(t), ρ(t)} = −{H0 + λH ′(t), ρ(t)} (8)

where we have used the Hamiltonian formulation of the classical equations of motion. Every differential

equation needs an initial condition: we assume that the perturbation is switched on adiabaticaly,

f(t) → f(t)eεt, with ε > 0 being arbitrarily small. Hence f(t → −∞) → 0, the system is in

equilibrium for t→ −∞: ρ(−∞) = ρ0 = e−βH0

Q .

Plug in the form for H ′(t):

dρ(t)

dt
= −{H0, ρ(t)}+ λf(t){A, ρ(t)} = iL0ρ(t) + λf(t){A, ρ(t)} (9)

To 1st order, the change from ρ0 to ρ(t) must be linear in the perturbation, so it makes sense to define

∆ρ(t) by

ρ(t) = ρ0 + λ∆ρ(t) (10)

Using dρ0
dt = 0, {H0, ρ0} = 0 and dividing by λ, Eq. (9) becomes

d∆ρ(t)

dt
= iL0∆ρ(t) + f(t){A, ρ0}+ O(λ) , ∆ρ(−∞) = 0 (11)

The linear response treatment means that the higher order correction term O(λ) is neglected.

The formal solution of this equation of the form ∆ρ̇ = iL0∆ρ+ b(t) can be obtain by means of the
retarded (causal) Green’s function G(t) = Θ(−t)eiL0t (see book by Economou):

∆ρ(t) =

∫ t

−∞
dseiL0(t−s)b(s)

proof: plug this solution into the equation. . . q.e.d.

Remember from the chapter about the Liouville formalism that eiL0t is the time-evolution operator

of the (unperturbed!) system.

The solution of eq. (11) is

∆ρ(t) =

∫ t

−∞
dseiL0(t−s){A, ρ0}f(s) (12)

Now that we know ρ(t) = ρ0 +∆ρ(t), we can calculate 〈B〉ρ(t) where in the following we abbreviate

〈.〉NV T ≡ 〈.〉0

〈B〉ρ(t) =

∫
dΓ [ρ0 + λ∆ρ(t)]B = 〈B〉0 + λ

∫
dΓ ∆ρ(t)B (13)

≡ B0 + λ∆B(t) (14)

∆B(t) =

∫ t

−∞
dsf(s)

∫
dΓ eiL0(t−s){A, ρ0}B ≡

∫ t

−∞
dsf(s)χ(t− s) (15)

with χ(t) =

∫
dΓ eiL0t{A, ρ0}B =

∫
dΓ {A(t), ρ0}B = response function (16)
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(where eiL0t acts on A). Note that the s-integral in line (15) is not a convolution integral as the upper

boundary is not ∞.

The response function χ(t) is independent of the external field f(t) and in fact can be cast into

the form of an equilibrium average: use
∫
dΓ {A,B}C =

∫
dΓA{B,C} to get

χ(t) =

∫
dΓ eiL0t{A, ρ0}B =

∫
dΓ {A(t), ρ0}B (17)

=

∫
dΓ {B,A(t)}ρ0 = −〈{A(t), B}〉0 = −〈{A,B(−t)}〉0 (18)

(a variable B without time argument is evaluated at t = 0, B ≡ B(0)). Note the difference to the

definition of the correlation function between A and B

cAB(τ) = 〈A(τ)B〉0 (19)

We can keep on manipulating χ into yet another form: using the definition of the Poisson

bracket (6) and ρ0 = e−βH0/Q

{A(t), ρ0} =
∂A(t)

∂R

∂ρ0
∂P
− ∂A(t)

∂P

∂ρ0
∂R

(20)

= −βρ0[
∂A(t)

∂R

∂H0

∂P
− ∂A(t)

∂P

∂H0

∂R
] = −βρ0{A(t), H0} = −βρ0Ȧ(t) (21)

Hence we get

χ(t) = β〈Ȧ(t)B〉0 = −β〈A(t)Ḃ〉0 (22)

where the 2nd equality can be shown analogously.

Remark: Without going through the derivation we give the generalization to coordinate dependent

perturbations coupling to a system variable A(r) (like e.g. the density operator ρ(r)):

H ′(t) = −
∫
d3r A(r)f(r, t) (23)

∆B(t) =

∫ t

−∞
ds

∫
d3r′ χ(r, r′; t− s)f(r′, s) (24)

For a homogeneous system, χ(r, r′; t−s) = χ(r−r′; t−s). Then the r′ integral is simply a convolution

integral, therefore the right hand side of line (24 becomes a simple produkt in k-space.

Remark: Let’s take a break and think: linear response theory assumes that a small perturbation

leads to a small change in the system, proportional to the perturbation. On the other hand, we have

molecular chaos (Liapunov instability): a small change e.g. in the initial condition, hence also a small

external perturbation, leads to trajectories which are exponentially diverging from the unperturbed

trajectories. Why does linear response theory work? One reason is that the response function χ(t)

decays quickly in time. But even if it does not (which is the case for perturbations with long wave-

length), linear response turns out to work: different exponentially diverging trajectories can still give

the same response ∆B(t). Of course, in the end only comparison with experiment can tell.
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1.2 Fluctuation-Dissipation Theorem

Now we are going to proof an important theorem of physics: the fluctuation-dissipation theorem is an

exact relation between the time-dependent correlation function cAB(t) between two variables A and

B and the response function χAB, i.e. between the (thermal, but also quantum) fluctuations of two

variables of a system in equilibrium (no external force), and the time-dependent response of variable

B if a weak external field f is applied which couples to variable A (see eq.(2)). That cAB and χAB

are related, is not a trivial physical matter, but mathematically the proof is straightforward.

Since every perturbing field f(t) is a superposition (Fouriertransform) of plane waves, we restrict

ourselves to plane waves (but don’t forget to adiabatically switch on):

f(t) = f0 e
−iωt+εt = f0 e

−i(ω+iε)t (25)

The integral expression (15) for the response becomes an algebraic expression

∆B(t) = χ(ω)f0 e
−iωt (26)

with the Laplace transform (=half a Fourier tranform) of the response function

χ(ω) = lim
ε→0+

∫ ∞
0

dt χ(t) ei(ω+iε)t ≡ χ′(ω) + iχ′′(ω) (27)

In order to calculate the Laplace tranformation, we keep ε finite to obtain the analytic continuation

of χ(ω) to the complex frequency z = ω + iε (keeping ε around helps us find the integration contour

around poles later). We use the Poisson-free form (22) of χ(t):

χ(z) = β

∫ ∞
0

dt 〈Ȧ(t)B〉0eizt = β

∫ ∞
0

dt [
d

dt
〈A(t)B〉0]eizt (28)

= β〈A(t)B〉0 eizt︸︷︷︸
eiz∞ = 0

∣∣∣∣∞
0
− β

∫ ∞
0

dt 〈A(t)B〉0
d

dt
eizt (29)

= β〈AB〉0 − izβ
∫ ∞
0

dt 〈A(t)B〉0eizt︸ ︷︷ ︸
= C̃AB(z)

(30)

Clearly, there is a relation between response and the correlation function CAB(t) = 〈A(t)B〉0. Its

Laplace transform C̃AB(z) can be also obtained from the Fourier transform (“power spectrum” /

“spectral function”) CAB(ω) =
∫∞
−∞ e

iωtCAB(t) via a Kramers-Kronig relation:

C̃AB(z) =

∫ ∞
0

dt eiztCAB(t) =

∫ ∞
0

dt eizt
∫ ∞
−∞

dω′ e−iω
′tCAB(ω′) (31)

= i

∫ ∞
−∞

dω′
CAB(ω′)

z − ω′
(32)

ε has done its part to determine which way to go around the pole in the integration: let ε→ 0+, such

that z → ω and use 1
x+iε = P 1

x − iπδ(x) (where P indicates the principal value integral). Taking the

real part of C̃AB(z),

<e C̃AB(ω) = πCAB(ω) (33)
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Finally, we take the imaginary part of eq. (30) (with ε set to 0)

=mχAB(ω) = χ′′AB(ω) = β =m〈AB〉0︸ ︷︷ ︸
= 0

+ωβ<e C̃AB(ω) = ωβπCAB(ω) (34)

where we now added subscripts AB to χ. This is the famous fluctuation-dissipation theorem (classical

version):

χ′′AB(ω)︸ ︷︷ ︸
↔ dissipation

=
πω

kBT
CAB(ω)︸ ︷︷ ︸

fluctuation

χ′′AB(ω) is the imaginary part of the response function that describes what happens to B when the

system is driven out of equilibrium by A. So what does χ′′ have to do with dissipation? It can be

shown that the imaginary part of the response function is indeed related to dissipation: ωχ′′AB(ω)

is proportional to the energy absorbed by the system from the applied harmonic perturbation of

frequency ω.

example: diffusion — mobility

In this example we derive a relation between thermal diffusion and mobility under an external

force. Instead of simply writing down the fluctuation-dissipation theorem for specific A and B

we derive the relation from scratch:

We consider a system of many particles, with one tagged particle of coordinate ri ≡ r. Let the

perturbation be H ′(t) = xf(t) = xf Θ(t). That is, at t = 0, a constant force f parallel to the

x-axis is switched on which acts on the tagged particle. Hence A = x. We are interested in the

response of the velocity in x-direction of the tagged particle, hence B = vx:

∆vx(t) =

∫ t

−∞
dsχvxx(t− s)fΘ(s) = β

∫ t

0
ds 〈vx(t− s)ẋ〉0f = βf

∫ t

0
ds 〈vx(t− s)vx〉0

= βf

∫ t

0
ds′ 〈vx(s′)vx〉0 (35)

The velocity response is simply given by the force times an integral over the velocity auto-

correlation function.

After sufficiently long time the system reaches a steady state where the tagged particle drifts

with a constant velocity proportional (linear response!) to the force f – it cannot keep on

accelerating like a free particle because the surrounding particles effectively act like a friction

force. The proportionality constant between drift velocity and force is called mobility µ:

lim
t→∞

∆vx(t) = f µ

On the other hand, if we let t→∞ in eq. (35), we get the Green-Kubo relation for the diffusion

constant

lim
t→∞

∫ t

0
ds′ 〈vx(s′)vx〉0 = D

5



Hence we obtain a simple relation between the diffusion constant and the mobility

µ =
1

kBT
D

Remark: The above discussion assumed equilibrium statistical mechanics and (linear) response

out of equilibrium. Therefore the fluctuation-dissipation theorem is not valid for glasses which are

“dynamically frozen” systems, i.e. not frozen like ice but certain modes become infinitely slow, pre-

venting the system from ever reaching equilibrium (glass does not flow, don’t believe the myth about

old church windows).
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