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What differentiates plasmonic Ga, Ag and Au coupled to graphene?
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» Metal atoms with d-valence electrons and noble metals exhibit covalent bonding on
the T-site with strong hybridization of adatom and garphene electronic states, with
strong distorsion changing some of the graphene sp2-like C to a more covalent
reactive sp3-like C
» Elements from groups I-lll (i.e. Ga) adsorbe on H-site and do not distort the

K-

graphene sheet. Thus the C-C bonds near the adatom retain their sp2 character
Ga does not react with C to form carbide
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Charge Transfer between Graphene and Metal Nanoparticles
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» As soon as the systems can communicate, equilibration of the Fermi energies takes place by
the transfer of electrons from the low to the high work-function system

» Charge transfer in opposite directions can be exploited to activate biomolecules, sensing and
drug delivery
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Tunability of the Localized Surface Plasmon resonance
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Au NPs-Graphene-Glass Ag NPs-Graphene Ga NPs-Graphene
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» Ga NP-based platforms are effective for creating localized surface plasmon resonances
(LSPR) tunable over the UV to the near IR spectral range and we have demonstrated SERS
activated by Ga NPs in both the visible and UV

[P. Wu, M. Losurdo et al. JACS 131, 12032 (2009)]
[M. Losurdo et al. Small 8, 2721 (2012)]
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Approach - Process
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Raman Enhancement by Ga NPs and Suppression by Au NPs
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k » Raman spectrum of graphene » Raman spectrum of graphene after Au
500 1000 1500 2000 2500 000 After Ga NPs indicates absence NPs indicates that the graphene lattice

of creation of defects by Ga structure is severely degraded as
deposition and a Raman evidenced by the diminishing 2D peak
enhancement at 2690 nm and increase of D-peak

Moaitivziior Avorozch Plasmonic graphene Hybrids (Sl (ETAPHENEIRGE Gr?.!ph’g;_:'_-; Ag/Graphene Conclusions



Graphene coupling with Gallium (Ga) Nanoparticles
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 Tunability of the LSPR in a broad energy range from UV to VIS NIR to match resonance
*The Raman modes of graphene are also enhanced and indicate no damage of graphene by Ga
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* Graphene is permeable to the electromagnéc field enhancementm. Losurdo et al. ACS Nano, 8, 3031 (2014)]
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Ga-Graphene as a SERS Sensor for Drugs_Rhodamine

What is the most appropriate graphene
SERS sensor configuration?

» The primary impact of graphene is quenching of the o
fluorescence background when R6G is anchored |
directly to graphene 38 : |
S
3 Jod AN WA raenararoon’ ] v
* When Ga NPs are deposited on graphene, a relative W R6G-0n-Ga-on-Graphene
increase by a factor of 10 in the intensity is observed N o R A |;
together with a decrease in the intensity of the 1648 2 e Q |
cm R6G peak indicating that R6G molecules are - o \ I
randomly oriented on the Ga NP surface iR AR .
R&G-on-Graphsne-on-Ga !
* When graphene is on top the Ga NPs, the R A | o i
enhancement factor is >50 and the 1648 cm! e ?
xanthene ring stretching mode iswell discerned, A ‘y |
providing evidence for a more ordered R6G overlayer [ ] ,
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Ag-Graphene as SERS Biosensor: Impact on Air Stability of Sensor
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* Graphene/silver hybrids
based LSPR applications
and SERS sensors are
significantly more stable
over a long time period,
enabling the technological
development of stable

.
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[M. Losurdo et al. Adv. Func. Mater, 24, 1864 (2014)]
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Ag NPs-Graphene as SERS Biosensor: Field Enhancement

. TLHMNPUSY N
The optical spectra of the nanoparticle arrays were measured over a period of one year of air exposure to study

the effectiveness of the graphene passivation.
Over a four-months the resonant peak damped dramatically for Ag NPs. In contrast, the Ag NPs that were
covered by the graphene showed a much more intense and robust preservation of the initial plasmon
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Electron Transfer from Graphene to Ag/AgO and AgO reduction
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* The metallic Ag° component shifts to
lower binding energies when it is in
contact with graphene
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Ag,0

Ag-carbonate
Ny

Time of air exposure

* When graphene is in contact with
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Indication of oxygen transfer from

silver to graphene
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Mechanism for Ag Deoxidation Promoted by Graphene
i
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Ag-Graphene as stable SERS sensing platform

(a) BZM/G/Ag Fishnet 2D TM¥HFUS*Y:8H

*The stability of the plasmon resonance of the Ag NPs and fishnet structure
is relevant to the realization of more stable and robust SERS sensors

*Ag NPs/graphene and graphene/Ag-fishnet has been evaluated and
compared using the BZM thiol as probing molecule 11 -system can
electronically interact with that of graphene

*For the SERS enhancement, EF, we considered the v12 mode and
found EF values of 210 for the graphene/Ag fishnet and of 300 for
the graphene/Ag NPs, stable over 1 year!!

*For comparison a CVD graphene transferred on a similar Au fishnet
has demonstrated an enhancement factor of =40 for the methylene
blue. [Q. Hao, et al., J. Phys. Chem. C, 2012, 116, 7249 ]

00 1000 1500 2000 2500 [M. Losurdo et al. Adv. Funct. Mater 24, 1864 (2014)]
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Summarizing
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"= Large area graphene by CVD is available on

various supports to create catalytic and = Graphene can provide a platform for sensing
sensing platforms ' NOX oy e
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