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Interference is a topic in optics which undergraduate physics, optics and EE students already learn in their 

second year. Assuming that the electric field behaves as a plane wave, one can explain well the colors of 

thin coatings, diffraction effects of the type introduced by Huygens, the spectral response of Bragg 

gratings, and many more optical phenomena. We all learn (and teach) in undergraduate courses that one 

has to sum the electric field vectors. However, writing down a plane wave and using the mathematical 

techniques does usually not give the correct explanations for some experiments. Plane waves, behaving 

as                                               ,  are solutions of Maxwell equations in any homogeneous region, but they 

do not grasp the physics of real wave trains or photons in two respects. Using them one assumes: 

1) Along the propagation direction the field (photon) is infinitely long;  

2) and perpendicular to the propagation direction  the field (photon) is infinitely wide; 

Despite for understanding some physical effects plane waves are helpful, there are two shortcomings 

inherently connected with them 

1) There is no photon (or wave train) which has in infinitely long coherence length, but the expression 

above gives the impression that the phase  is well defined for any instant and any point in space 

along the propagation direction. We all know from experience that each wave (photon) has a finite 

coherence length. The colorful pattern of a thin oil film on water or from a thickness variation of an 

oxide layer on silicon (see Fig. 1) arises from this effect; however, when asking students why a thic-

ker oil film (> ~1 µm) does not show such interference colors anymore, many explanations are pro-

posed, but seldom the correct one that the coherence length of light is already too small to yield 

interference (with our eyes as broadband detector and the photons from the sun as broadband 

source!).  

2) Furthermore, there is also no wave field which has normal to the propagation direction a definite 

and well defined phase. Experimentally it turns out that the correlation of the fields vanishes also 

perpendicular to the propagation direction , which is shown with Young’s double slit experiment if 

the two slits are far apart. This has been used by two astronomers Hanbury-Brown and Twiss to de-

termine the size of stars in other galaxies.1,2 In other words: even if strictly monochromatic light is 

used, each photon has also a finite coherence area  ΔA = Q2  = R2  λ2/ΔS with the areal size of the 

light source ΔS, the distance R and the quasimonochromatic wavelength λ. The quantity                              

 is also sometimes called coherence distance.  
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Fig.1: Newton’s rings, produced through slight 
and continuous thickness variations of an 
oxide film on silicon. One can see the va-
nishing colour of the rings (i.e. temporal deco-
herence), which indicates that the coherence 
length of light is approximately of the same 
order than the oxide thickness.  

Fig.2: Schematic sketch of Young’s interference fringes. The red line  shows the 

intensity variations (on a screen in the far field) calculated with assumed infinite 

coherence, the black line the true experimental result. The finite coherence area, 

yielding to a damping of interference fringes(i.e. spatial decoherence), is given by 

ΔA = Q2 = R2λ2/ΔS , with ΔS as (vertical) extension of the light source, R, λ for the 

distance and monochromatic wavelength, yielding a finite coherence area ΔA. 

ONLY INTENSITIES ARE MEASUREABLE QUANTITIES  
Any optical detector for optical radiation never measures the field, all measure intensities! And because 

each intensity measurement takes long against the oscillation period of light                     always intensities 

are measured. (Perhaps fast sampling oscilloscopes work up to 10 GHz, but this is still far away from 

optical frequencies.) So, in the case of two interfering fields, e.g. from a Michelson interferometer, or 

from two different slits in Young’s experiment, (respectively Huygen’s principle), the measured intensity  

is always                                                               

Provided                   are deterministic and well defined quantities over time and space, the square of the 

sum can be formed straightforward yielding interference terms; however, if              are not well cor-

related any more due to a finite coherence length / distance, and their mutual correlation vanishes, then 

instead of coherence terms yielding a cosinusoidal intensity variation, the sum of intensities is measured. 

All the arguments above are only classical and I just note in passing that quantum optics yields                   ,  

with ΔN as standard deviation for the photon number, (which implies that beams with a definite photon 

number have a totally undefined phase).  

EFFECT ON POLARIZATION 
Until now we have just argued with scalar electrical fields and discussed for intensity measurements au-

tocorrelation functions                                     which manifest their correlation by the sharpness (visibility) 

of fringes in Michelson’s (temporal) or Young's (spatial) interference experiments. Polarization measure-

ments are usually done by measuring the (time averaged) correlations of different components of the 

electric field at a single point in time and space (loosely written as                              . In optics, we do not 

measure the electric fields, since the available detectors are much too slow, but their statistical second 

moments (see the correlation function 2 lines above). Based on a proposal by J. Humlicek in chapter 1.4 

of ref. 3, R. Ossikovski and K. Hingerl recently published4,5 two papers how the effect of decoherence can 

be formulated analytically to describe the effect of decoherence on depolarization. For both cases, it 

turns out that the intensity measurement, or better the four intensity measurements to determine the 

Stokes parameters, can be predicted by 16 measurements (Müller Matrix elements) for all possible input 

and output polarization vectors.  
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