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A good quote on Statistics
* “The best thing about being a statistician is that you get to
play in everyone else’s backyard.” (John Tukey, Bell Labs,
Princeton University).

Statisticians apply statistical thinking and methods to a wide variety of
scientific, social, and business endeavours in such areas as:

- astronomy;
- chemistry (e.g. problem of estimating folding rates for some protein
having a coordinate switching between the folded and unfolded state);
- biology (including physiology, neuroscience, etc.);
- bioinformatics (e.g. patter recognition, see on Tuesday);
- economics/finance;
- engineering;
- genetics (detection of genetic variations);
- mathematics;
- medicine;
- all kind of recognition;
- physics (you’ve seen it yesterday);
- psychology (visual attention).
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What is Statistics?
Statistics is the science of learning from data, and of
measuring, controlling, and communicating uncertainty; and it
thereby provides the navigation essential for controlling the
course of scientific and societal advances. (Davidian, M. and
Louis, T. A., 10.1126/science.1218685).

Before starting. . . Let us focus on:

• Are our data/experiments good?

• What question do we want to answer?

• An approximate answer to the right problem is worth
a good deal more than an exact answer to an
approximate problem. John Tukey.

• There are no routine statistical questions, only
questionable statistical routines. Sir D. R. Cox.

• Which model do we want to consider?
+

All models are wrong, but some are useful. G. E. P. Box.

-

Statisticians, like artists, have the bad habit of falling in
love with their models. G. E. P. Box.
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Sampling and statistical inference
The combination of some data and an aching desire for
an answer does not ensure that a reasonable answer can
be extracted from a given body of data. John Tukey.

All generalizations are false, including this one. Mark
Twain.
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The importance of good sampling/data
An election will be held next week and, by polling a sample of the
voting population, we are trying to predict whether the Republican or
Democratic candidate will prevail. Which of the following methods of
selection is likely to yield a representative sample?

(a) Poll all people of voting age attending a basketball game.

(b) Obtain a copy of the voter registration list, randomly choose 100
names, and question them.

(c) Use the results of a television call-inpoll, in which the station
asked its listeners to call in and name their choice.

(d) Randomly choose 100 names from the telephone directory and
call these people.

The approach (d) led to a disastrous prediction in the 1936 presidential
election, in which Franklin Roosevelt defeated Alfred Landon by a
landslide. A Landon victory had been predicted by the Literary Digest.
The magazine based its prediction on the preferences of a sample of
voters chosen from lists of cars and telephone owners.

Why the Literary Digests prediction was so far off?
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A further quote on Statistics and data
* If you torture the data enough, nature will always
confess. Ronald Coase.

Two doctors are planning to try out a new treatment on
patients, both male and female. The 1st doctor writes:

Male Female
Treatment Standard New Standard New

Dead: 950 9000 5000 5
Alive: 50(5%) 1000 (10%) 5000 (50%) 95(95%)

The 2nd doctor, sum up the data in the following table:

Treatment Standard New
Dead: 5950 9005
Alive: 5050 (46%) 1095 (11%)

*On Simpson’s Paradox and the Sure-Thing Principle, Coling R. Blyth,
J. Am. Stat. Assoc., 67 (388), 364–366 (on KUSSS)
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Sample space, outcome, events, probability
Sample space Ω: set of all possible outcomes (i.e. results) of an
experiment.
A possible outcome ω is an element of the sample space, i.e. ω ∈ Ω.
An event A is a subset of the sample space Ω, i.e. A ⊂ Ω.

* Rules for probabilities are for statistics what arithmetics is for
mathematics.

Some famous results from probability theory:
Let A and B be two events in Ω, with P(B) > 0.
* Conditional probability for A given B: P(A|B) = P(A∩B)

P(B)
.

* Multiplication rule. P(A ∩ B) = P(A |B)P(B) = P(B|A)P(A).

*Bayes’ Theorem: P(A|B) =

P(B|A)P(A)
P(B)

⇒ we can compute P(A|B)

from P(B|A).

* Law of total probability. If {B1, . . . ,Bn} is a finite partition of Ω, then

P(A) =
n∑

i=1

P(A |Bi )P(Bi )

* A,B are independent if P(A ∩ B) = P(A)P(B).
Theorem: A,B independent ⇐⇒ P(A|B) =

P(A)

.
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Let’s go back to our medical issue
Male (M) Female (F)

Treatment Standard (S) New (N) Standard (S) New (N)
Dead (D): 950 9000 5000 5
Alive (A): 50(5%) 1000 (10%) 5000 (50%) 95(95%)

Treatment Standard (S) New (N)
Dead (D): 5950 9005
Alive (A): 5050 (46%) 1095 (11%)

We have:

P(A|N,M) = 0.1 > P(A|S,M) = 0.05

P(A|N,F ) = 0.95 > P(A|S,F ) = 0.50

However P(A|N) = 0.1 < P(A|S) = 0.46.

How can that be possible? Look at this table

Standard New
Male 1000 (9%) 10000 (99%)

Female 10000 (91%) 100 (1%)

and think about conditional probability!
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Random variables. Sample space.
Distribution
We use probability theory to describe phenomena involving
randomness.

The sample space Ω is the set of all possible outcomes (i.e.
results) ω of an experiment.

A random/stochastic variable X is the random outcome of an
’experiment’.

E : set containing the possible values assumed by X . Discrete
rv: E = N or subset (finite/infinite). Continuous rv: E = R or
(infinite) subset.

The distribution of X describes the probability of an outcome or
ranges of outcomes. To define it, we need to specify the
probability of each outcome.

Examples when rolling dice:
* X: rv recording the outcome when rolling a die. Ω? E?
* X: rv counting the ones when rolling 2 dice. Ω?E?
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Statistical model
We run an experiment and we get some data.

1 We perform a statistical analysis, e.g. estimate some parameter,
run some tests, etc.

2 We derive our conclusions based on our data.
New data⇒ New statistical analysis⇒ New conclusion ?
How much can we rely on our conclusions/estimates?

* Data (or observations) x = (x1, . . . , xn): outcome of an experiment. x
is a value (realization) of a random variable X = (X1, . . . ,Xn).
* Idea: use x to obtain info about the distribution (why?) of X.
* Statistical Model: set P of possible probability measures Pθ
parametrized by a parameter θ, that is

P = {Pθ : θ ∈ Θ},
with Θ: parameter space.
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Samples, statistical models and statistics
*Identifiability: For θ1, θ2 ∈ Θ, if θ1 6= θ2 ⇒ Pθ1 6= Pθ2 . [e.g. FPTs
for Wiener process]
*Sample X = (X1, . . . ,Xn): collection of independent rvs Xi with
distribution Pi,θ ⇒ Statistical model:

P = P1,θ × · · ·Pn,θ.

*iid sample X: collection of iid rvs where all Xi have the same
distribution Pi,θ = P1,θ ⇒ Statistical model:

P = P⊗n
1,θ.

Obs p(x;θ) := pθ(x)
indep.

=
∏n

i=1 pi,θ(xi )
ident.distr

=
∏n

i=1 p1,θ(xi ).
*A statistic is a function of the random sample which
compresses the data, i.e. it defines a data reduction/data
summary. Very well known statistics:
Sample mean X̄ := 1

n

∑n
i=1 Xi ; Sample variance

S2 := 1
n−1

∑n
i=1(Xi − X̄ )2, minimum and maximum.

Mathematical statements derived from statistical methods are exact
under the chosen model but their validity in practice depends on how
well the model reflects the problem! ⇒ All models are true and good
BEFORE validating them on data. ⇒ Model validation (Does the
model fit the data?) is CRUCIAL.
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model fit the data?) is CRUCIAL.
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Example: Deterministic vs Stochastic models.
Experimental data of dodecanedioic acid (C12) in rat livers

Data from: S. Ditlevsen, A. De
Gaetano. Stochastic vs.
deterministic uptake of
dodecanedioic acid by isolated
rat livers. Bulletin of
Mathematical Biology, 67 (3),
547–561, 2005.

Assuming exponential decay

Estimate of C(0) and µ?

Assuming exponential decay with noise

Estimate of C(0), µ and σ?
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Estimation in fully (discretely) observed
diffusion processes
* Diffusion process: Stochastic process obtained as
solution of a SDE (e.g. using Ito’s formula).

dXt = b(Xt ; θ)dt + σ(Xt ; θ)dWt θ ∈ Θ ⊆ Rp

X ,b and W d-dimensional, σ: d × d matrix.

State space: D ⊆ Rd .

For d = 1, D = (l , r),−∞ ≤ l < r ≤ ∞.

Data: Xt1 , . . . ,Xtn , ti = ∆i , i = 1, . . . ,n.

Prop: A diffusion process is a Markov process.
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Markov process (Hints)
* For simplicity, let us consider discrete time stochastic process
{Xt : t ∈ N}.

* Finite state-space S = {1, . . . ,m} such that Xt = j ∈ S for all
t ∈ N.

* Markov property: Define X(t) = (X1,X2, . . . ,Xt ) the history till
time t . Then

P(Xt+1 |X(t)) = P(Xt+1 |Xt ,Xt−1, . . . ,X1) = P(Xt+1 |Xt ).

X1 X2 X3 Xt

* A Markov chain (MC) is a stochastic process with the
property that the future states are independent of the past
states given the present state.
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1 Introduction to Statistics
The importance of sampling

2 Parameter estimation in fully observed models.
Maximum likelihood estimation
Least squares estimation.

3 Neuroscience
Intro and data-type

4 Single neuron modelling: HH-type models
Parameter estimation in partially observed models.

5 Leaky Integrate-and-Fire (LIF) models
Parameter estimation in fully observed models.
Parameter estimation from hitting times.
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Maximum likelihood estimation (MLE).
dXt = b(Xt ; θ)dt + σ(Xt ; θ)dWt θ ∈ Θ ⊆ Rp

*Data: Xt1 , . . . ,Xtn , t1 < · · · < tn.

∗Likelihood function: Ln(θ) = p(Xt1 , . . . ,Xtn ; θ).

(What is a likelihood function? Meaning? Interpretation?)
* Maximizing the likelihood yields the maximum likelihood
estimator.
* Note: It is easier to maximize the log-likelihood
ln(θ) = log Ln(θ) (it has the same maximum).

* For simplicity: assume θ ∈ R, i.e. only one parameter
unknown (similar for θ ∈ Θ ⊆ Rp). Derive θ̂ as follows:

1 Compute the likelihood function Ln(θ);

2 Compute the log-likelihood ln(θ) = log L(θ);

3 Compute the score function(s) ∂θ ln(θ);

4 Estimator θ̂ such that ∂θ ln(θ) = 0.

How to compute the likelihood Ln(θ)?
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The “correct” likelihood function
dXt = b(Xt ; θ)dt + σ(Xt ; θ)dWt θ ∈ Θ ⊆ Rp.

Data: Xt1 , . . . ,Xtn , t1 < . . . < tn.
We have the “correct”(under the assumed model) likelihood-function:

Ln(θ) = p(Xt0 ,Xt1 , . . . ,Xtn ; θ).

Applying Bayes’ theorem several times we get

Ln(θ)
Bayes′Th.

= p(Xtn |Xt0 ,Xt1 , . . . ,Xtn−1 ; θ)× p(Xt0 ,Xt1 , . . . ,Xtn−1 ; θ)

= Continuing applying Bayes’ theorem this way

= p(Xtn |Xt0 ,Xt1 , . . . ,Xtn−1 ; θ)× p(Xtn−1 |Xt0 ,Xt1 , . . . ,Xtn−2 ; θ)× · · ·
· · · × p(Xt2 |Xt0 ,Xt1 ; θ)× p(Xt1 |Xt0 ; θ)p(Xt0 ; θ)

An important property of our observations, which they inherit from the
diffusion process: they are a Markov process. Thus:

p(Xtn |Xt0 ,Xt1 , . . . ,Xtn−1 ; θ) = p(Xtn |Xtn−1 ; θ)

and therefore
Ln(θ) = p(Xtn |Xtn−1 ; θ)× · · · p(Xt1 |Xt0 ; θ)p(Xt0 ; θ) =

n∏
i=1

p(Xti |Xti−1 ; θ)p(Xt0 ; θ).

log-lik⇒ ln(θ) = log p(Xt0 ; θ) +
n∑

i=1

log p(Xti |Xti−1 ; θ)

Score function⇒ ∂θ ln(θ) = [∂θp(Xt0 ; θ)]/p(Xt0 ; θ) +
n∑

i=1

[∂θp(Xti |Xti−1 ; θ)]/p(Xti |Xti−1 ; θ).
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Likelihood function: Ln(θ) =
n∏

i=1

p(∆i ,Xti−1 ,Xti ; θ)p(Xt0 ; θ), ∆i := ti−ti−1

with p(∆i ,Xti−1 ,Xti ; θ) = p(Xti |Xti−1 ; θ) transition density, i.e.
probability density function of the conditional distribution of
Xt+∆ give that Xt = x . (Also conditional density of Xt+s+∆ given
Xt+s = x since the process is time homogeneous).

* If p(∆, x , y ; θ) is
known ⇒ MLE as before, either analytically or numerically, i.e.

1. compute the log-likelihood ln(θ). 2. solve ∂θ ln(θ) = 0.

unknown (or nasty) What to do?
1st Approach Approximate p(∆, x , y ; θ) with something we like, e.g.

normal transition density.
⇒ Derive the approximate likelihood function.
⇒ Derive an estimator as before, setting the score
function to zero.

2nd Approach Consider other suitable function instead of the
likelihood (e.g. Least squares estimation).

Alternative: Unknown quantities can be also approximated by
simulations!
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Example: Ornstein-Uhlenbeck (OU) process
dXt = −β(Xt − α)dt + σdWt

where β > 0, α ∈ R, σ > 0 and X0 = x0.

Solution (Using Ito’s formula):

Xt = α + (x0 − α)e−βt + σ

∫ t

0
e−β(t−s)dWs.

Sum of deterministic terms and an integral of a deterministic function
with respect to a Wiener process with normally distributed increments
⇒ The distribution is normal.

The conditional expectation is

E[Xt |X0 = x0] = E
[
α + (x0 − α)e−βt + σ

∫ t

0
e−β(t−s)dWs

]
=

α + (x0 − α)e−βt .

The conditional variance is

Var(Xt |X0 = x0) = E

[(
σ

∫ t

0
e−β(t−s)dWs

)2
]

Ito’s isom.
=

σ2E
[∫ t

0
e−2β(t−s)ds

]
=
σ2

2β
(1−e−2βt ).

Thus, (Xt |X0 = x0) ∼ N
(
α + (x0 − α)e−βt , σ

2

2β (1− e−2βt )
)

.

Asymptotically Xt ∼

N(α, σ
2

2β )

(or always if X0 ∼ N(α, σ
2

2β )).
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Parameter interpretation in the OU process

Asymptotically Xt ∼ N(α, σ
2

2β ).

β: how “strongly” the system reacts to perturbation.

(the “decay rate”or “growth-rate”).

σ2: the variation or the size of the noise.

α: the asymptotic mean.
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Example: Least squares estimation for OU.
* Consider the OU process (for simplicity with only one parameter):

dXt = −θXt + Wt , (i.e. β = θ, α = 0, σ = 1).

* Data: Xt1 , . . . ,Xtn with ∆ = ti − ti−1 ⇒ Data: X∆,X2∆, . . . ,Xn∆.
* For these parameter values, we saw before that

(Xti |Xti−1 ) = (Xi∆|X(i−1)∆) ∼ N
(

X(i−1)∆e−θ∆,
1− e−2θ∆

2θ

)
⇒ Eθ(Xi∆|X(i−1)∆) = xeθ∆ Varθ(Xi∆|X(i−1)∆) =

1− e−2θ∆

2θ
.

Idea: Approximate Xi∆ with its conditional mean.
⇒We can find an estimator for θ by minimizing

Kn(θ) =
n∑

i=1

(
Xi∆ − eθ∆X(i−1)∆

)2

⇒ Least squares estimation or minimum contrast estimation.

Solve d
dθKn(θ) = 0 gives us

θ̂ = −
1
∆

log

(∑n
i=1 X(i−1)∆Xi∆∑n

i=1 X 2
(i−1)∆

)
,

provided that
∑n

i=1 X(i−1)∆Xi∆ > 0.

* Note: Since p(Xi∆|X(i−1)∆; θ) is known, one could also perform MLE.
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How does a human brain look like?

What is going on in our brain?
How does a single neuron look like?
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Structure of a neuron and neuron activity
Three functionally distinct parts:

1 dendrites: input device collecting signals

2 soma (cell body): central processing unit

3 axon: output device

Connections between neurons are due to
synapses (presynaptic, postsynaptic): chemical
neurotrasmitters

* Two different types of measurements of the neuronal activity:
1 Intracellular recordings. Type of data: sampling from the

membrane potential Vt .
2 Extracellular recordings. Type of data: spike times.

Action Potential or Spike
An action potential (or spike) is a short
voltage pulse of 1-2 ms of duration and
around 100mV of amplitude. The action
potentials of a specific neuron have
a characteristic shape.
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Intracellular recording
* Intracellular recording: Difference between the membrane
potential (voltage) Vt internal to the cell and the surrounding. In
absence of inputs, it spontaneously decays toward an initial
voltage V (0) of about −65mV .

* Data: Vt1 , . . . ,Vtn from the membrane potential Vt .

Observations of the membrane potential in a spinal motoneuron of an adult
red-eared turtle during 600 ms measured every 0.1 ms. Data from Berg
Laboratory (Berg et al.2007)

Slide 28/43 — Tamborrino — Statistics in neuroscience



J O H A N N E S K E P L E R U N I V E R S I T Y L I N Z I N S T I T U T E F O R S T O C H A S T I C S

Extracellular recording (Spike train)
We observe the spikes.

Two alternative approaches:
• Rate coding⇒Working with point processes.
• Temporal coding⇒Working with

Interspike-Intervals (ISIs).
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Relevant questions at a single-neuron level

• How to model the single neuronal behaviour?
• Models driven by ODEs (Lapique, Hodgkin-Huxley,

FitzHugh-Nagumo, Morris Lecar);
• Models driven by SDEs (Jump processes, LIF models,

FN/ML models with noise);
• Models driven by SDEs with adaptations (MAT models).

• How to model/reproduce/predict spikes?
• HH type of models: firing through stable limit cycles
• LIF models: hitting times to a (“artificial”) threshold

• Are single neuron models any useful? Why?
• Investigate the effect of external stimuli
• Investigate relationships between inputs and output signal
⇒ Information measures (entropy, Fisher information)

• Investigate the role of noise in neural coding (noise may
provide a better decoding!)

• What information can we extract from data?
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Hodgkin-Huxley model & friends
Detailed model taking opening/closing of ion channels into
account. A HH model is a system of 4 ODEs (Vt : membrane
voltage) given by

Cm
dVt

dt
= −gK n4(Vt−EK )−gNam3h(Vt−ENa)−gL(Vt−EL)+I

Gating variables:
ṁ = αm(Vt )(1−m)− βm(Vt )m

ḣ = αh(Vt )(1− h)− βh(Vt )h
ṅ = αn(Vt )(1− n)− βn(Vt )n

A.L. Hodgkin and A. F. Huxley, A quantitative description of membrane current
and its application to conduction and excitation in nerve, J. Physiol., 117(4):
500-544, 1952. ⇒ Nobel Prize in Physiology or Medicine in 1963.

Important simplified versions: Morris-Lecar model,
Fitzhugh-Nagumo model.

* These models create a feedback system capable of producing
spikes (through limit cycle).
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Inference from intracellular recording
(for conductance/current based models as Hodgkin-Huxley & friends)

* Data: Intracellular recording Vt1 , . . . ,Vtn .

* Goal: Estimation of parameters appearing in both Vt and Wt .

* Unrealistic scenario: Assume Wt to be observed.
* Why do we do that?
* How do we do that? MLE.

* Realistic scenario:

Wt is not observed!
⇒ Estimation from partially observed models:

* If lucky: Hidden-Markov models.
* If not: particle filter for (non)-autonomous systems,

stochastic approximation methods, EM algorithm (with particle
filters), etc.

S. Ditlevsen, A. Samson. Parameter estimation in neuronal stochastic
differential equation models from intracellular recordings of membrane
potentials in single neurons: a Review. J. Soc. Franc. Stat., 2015
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Hidden Markov models (Hints)
Define the history up to time t :

C(t) = (C1,C2, . . . ,Ct ) X(t) = (X1,X2, . . . ,Xt )

The model consists of two parts:
Unobserved parameter process: {Ct : t ∈ N} satisfying the
Markov property:

P(Ct |C(t−1)) = P(Ct |Ct−1), t = 2,3, . . .

Observed state-dependent process: {Xt : t ∈ N} satisfying
conditional independence given the state of the MC:

P(Xt |X(t−1),C(t)) = P(Xt |Ct ), t = 1,2, . . .

X1 X2 X3 Xn

C1 C2 C3 Cn

(Some of the) Goals when dealing with HMMs
* Forecasting for Xt+n given X(t). * Local decoding of Ct given X(t).
* Global decoding of (C1, . . . ,Ct ) given X(t).
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Common method: EM algorithm
* Iterative method to perform MLE with missing data.
* Useful when the complete data likelihood is easier to
maximized then the observed data likelihood.
Observed data: X (N) : (X1, . . . ,XN).
Unobserved (missing, hidden) data: C(N) : (C1, . . . ,CN).
Complete data: (X (N),C(N)).
Observed data likelihood: p(X1, . . . ,XN ; θ).
Complete data likelihood (CDL) : p(X1,C1, . . . ,XN ,CN ; θ).

Idea: Choose an initial value for the parameter θ.

E-step: Conditional expectations of the missing data given the
observations and the current value of θ.

M-step: Update θ by maximizing the CDL with respect to θ, with the
missing data replaced by their conditional expectations,
calculated in the E-step.

Repeat until convergence, e.g. change in θ is less than some
chosen value. ⇒ the obtained θ̂ is then a stationary point of the
likelihood - not necessarily a global maximum.
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Leaky Integrate-and-Fire (LIF) models

=⇒ •

The model:

dXt = µ(Xt )dt + σ(Xt )dW (t); X0 = x0

Xt : membrane potential at time t after a spike.

x0: initial voltage membrane potential at time t after a spike.

A spike is produced when the membrane voltage Xt exceed a
firing threshold St > X0 = 0.

After firing, the process is reset to x0. The interspike interval T
is identified with the first passage time (FPT) of the threshold:

T = inf{t > 0 : Xt ≥ St}
KEY PROPERTY: Interspike intervals are iid! (Is this
realistic??)
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Inference from intracellular recording (for LIF)

dXt = µ(Xt ; θ)dt + σ(Xt ; θ)dW (t); X0 = x0, θ ∈ Θ ⊆ Rp.

* Data: Intracellular recording
Xt1 , . . . ,Xtn .
* Scenario: Fully (discretely)
observed process.
* Goal: Estimation of θ.

* This is NOT the same scenario we saw before: the presence
of the threshold changes the underlying transition density!

⇒ Perform MLE from the previous transition free density
introduce biases in the estimators!

⇒We should consider the transition density of Xt in presence
of absorbing boundary.

Issue: This density is often unknown! What to do?
* Numerical methods to calculate it.
* Monte-Carlo simulation based methods.
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Inference from extracellular recordings (for LIF)
Simplest (and most common) hypothesis:
constant threshold St = S > X0 (Is it realistic?)

Underlying processes

Note: There is only information on the time scale, nothing on
the scale of Xt .

⇒ Something is not identifiable in the model
from these data⇒ something (typically the threshold S) has to
be assumed known!

Interspike intervals are assumed to be iid (Is that realistic??).

Common approaches: Maximum likelihood estimation (pT (t ; θ)
is rarely known⇒ we compute it numerically or via
simulations), Moment estimation, Laplace estimator of T , etc.
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Example: Brownian motion with drift
Simplest model (known in neuroscience as Perfect-Integrator)

dXt = µdt + σdWt , µ > 0, σ > 0; X0 = 0 < S

The FPT distribution of T is known (one of the few cases!): T is
Inverse Gaussian with scale parameter S/µ and shape
parameter S2/σ2, with mean, variance and density:

T ∼ IG
(

S
µ
,

S2

σ2

)
, E[T ] =

S
µ
, Var(T ) =

Sσ2

µ2 ,

pT (t ; θ) =
S√

2πσ2t3
exp

(
− (S − µt)2

2σ2t

)
(1)

Note: Identifiability issue (S̃ = aS, µ̃ = aµ, σ̃2 = a2σ2,a > 0
yield the same distribution!) ⇒We cannot estimate S, µ, σ2 at
the same time⇒We assume S to be known.
⇒ Parameters to estimate: µ and σ2.

Data: T1, . . . ,Tn FPTs of Xt through S. Important: iid rvs!

Possible approaches: MLE and Moment Estimation
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MAXIMUM LIKELIHOOD ESTIMATORS

Ln(θ)
iiddata

=
n∏

i=1

pT (Ti ; θ)
(1)
=

n∏
i=1

 S√
2πσ2T 3

i

 exp
(
− (S − µTi )

2

2σ2Ti

)

⇒ ln(θ) =
n∑

i=1

log pT (Ti ) =
n∑

i=1

log

 S√
2πσ2T 3

i

− n∑
i=1

(S − µTi )
2

2σ2Ti

Score functions:⇒ ∂µln(θ) =
n∑

i=1

(S − µTi )

σ2 ; ∂σ2 ln(θ) = − n
2σ2 +

n∑
i=1

(S − µTi )
2

2(σ2)2Ti

Solving ∂µln(θ) = 0 and ∂σ2 ln(θ) = 0 in µ and σ2, yields

µ̂MLE =
S
T̄

; σ̂2
MLE = S2

(
1
n

n∑
i=1

1
Ti
− 1

T̄

)
, with T̄ =

1
n

n∑
i=1

Ti (sample mean).

MOMENT ESTIMATORS

Idea: Obtain estimators by equalizing true moments and sample moments. ⇒
The moment estimators µ̂ME and σ̂2

ME are obtained by solving a system
of 2 equations in 2 unknown (true moments = sample moments):

E[T ] =
S
µ

= T̄ ; Var(T ) =
Sσ2

µ3 =
1

n − 1

n∑
i=1

(
Ti − T̄

)2

⇒ µ̂ME =
S
T̄

= µ̂MLE σ̂2
ME =

µ̂3

S
1

n − 1

n∑
i=1

(
Ti − T̄

)2 6= σ2
MLE.
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Next time you deal with data
Important initial questions

1 Are the data “good”enough? Are they iid?

2 What question (do I want to)/can I answer from those data?

3 What can be a good model for the available dataset?

Once the previous questions have been answered, new questions
arise:

1 How can I estimate the relevant parameters?
⇒ Develop reliable statistical methods.

2 How much can I trust my conclusions?
⇒ Use simulations to get simulated/asymptotic errors/confidence
intervals for the true parameters.

3 Is the chosen model able to fit the data? ⇒ Model validation.

4 How should I choose between two possible competing models?
⇒ Model selection, e.g. Akaike Information Criterion (AIC),
Bayesian Information Criterion (BIC) .
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